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Espaces vectoriel, définition

Un ensemble E, muni d’une addition et d’une multiplication
externe par des nombres réels est un espace vectoriel sur R si
les deux opérations vérifient :
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Espaces vectoriel, définition
Propriété de l’addition

É ∀~u , ~v , ~w ∈ E : (~u+ ~v) + ~w = ~u+ (~v+ ~w)

É ∀~u , ~v ∈ E : ~u+ ~v = ~v+ ~u

É ∃~0 ∈ E : ∀~u ∈ E : ~0+ ~u = ~u+ ~0 = ~u

É ∀~u ∈ E,∃~v ∈ E (noté : −~u) tel que : ~u+ ~v = ~v+ ~u = ~0
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Espaces vectoriel, définition
Propriétés de la multiplication externe

É ∀~u ∈ E, ∀α , β ∈ R : α.
�

β.~u
�

= αβ.
�

~u
�

É ∀~u ∈ E : 1.~u = ~u
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Relation de l’addition et de la multiplication externe
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Sous-espace vectoriel

Soit E un espace vectoriel et F ⊂ E une partie non-vide de E.

F est un sous-espace vectoriel de E, si :

É ~u , ~v ∈ F ⇒ ~u+ ~v ∈ F (stabilité par addition)

É ~u ∈ F, α ∈ R ⇒ α.~u ∈ F (stabilité par multiplication
externe)
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Combinaisons linéaires

Soit F = {~u1 , ~u2 , . . . , ~un}

= {~ui}1≤i≤n, une famille de vecteurs
d’un espace vectoriel E, on appelle combinaison linéaire des
vecteurs ~ui (ou combinaison linéaire de la famille F),

le vecteur ~v :

~v = α1.~u1 + α2.~u2 + · · ·+ αn.~un =
n
∑

i=1

αi.~ui
�

αi ∈ R, 1 ≤ i ≤ n
�
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Partie génératrice

Proposition : Soit F = {~ui}1≤i≤n une famille de vecteurs d’un
espace vectoriel E.

L’ensemble F de toutes les combinaisons linéaires de F , est
un sous-espace vectoriel de E.

On note F = Vect
�

F
�

F est engendré par F , ou F est une partie génératrice de F.
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Espaces vectoriels Indépendance linéaire

Famille libre

Soit F = {~ui}1≤i≤n une famille de vecteurs d’un espace
vectoriel E.

On dit que la famille F est libre, si :

α1.~u1 + α2.~u2 + · · ·+ αn.~un = ~0 ⇒ α1 = α2 = · · · = αn = 0

On dit aussi : les vecteurs ~ui (1 ≤ i ≤ n) sont linéairement
indépendants.

Un famille qui n’est pas libre est dite liée.
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Espaces vectoriels Indépendance linéaire

Famille libre
Exemple

Soit les vecteurs ~u , ~v , ~w de l’espace vectoriel R4 :

~u = (2,0,3,0) , ~v = (0,−1,0,0) , ~w = (5,−2,0,0)

La famille ~u , ~v , ~w est libre.

Soient α , β , γ ∈ R tels que : α.~u+ β.~v+ γ. ~w = ~0
Alors :







2α+ 5γ = 0
−β− 2γ = 0
3α = 0

Donc α = β = γ = 0
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Espaces vectoriels Indépendance linéaire

Famille libre
Exemple

Soit la famille F = {~u(X) = X
2
, ~v(X) = X(X− 1) , ~w(X) = (X− 1)2}

dans l’espace vectoriel R2[X] des polynômes de degré
inférieur ou égal à 2.

La famille F est linéairement indépendante.

Soient α , β , γ ∈ R tels que : α.~u(X) + β.~v(X) + γ. ~w(X) = ~0
Alors :







α+ β+ γ = 0
β+ 2γ = 0
γ = 0

Donc α = β = γ = 0
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Espaces vectoriels Indépendance linéaire

Famille libre
Exemple

Dans l’espace vectoriel R2, soit la famille de vecteurs :
~u = (1 ,−1) , ~v = (1 ,3) , ~w = (2 ,5).

La famille {~u , ~v , ~w} est liée.

Soient α , β , γ ∈ R tels que : α.~u+ β.~v+ γ. ~w = ~0
Alors :

�

α+ β+ 2γ = 0
−α+ 3β+ 5γ = 0

Donc α = −1
4 , β = −7

4 , γ = 1 et : ~w = 1
4 .~u+ 7

4 .~v

Remarque : Quand une famille est liée, on peut exprimer des
vecteurs de la famille comme combinaison linéaire des autres.
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−α+ 3β+ 5γ = 0

Donc α = −1
4 , β = −7

4 , γ = 1 et : ~w = 1
4 .~u+ 7

4 .~v

Remarque : Quand une famille est liée, on peut exprimer des
vecteurs de la famille comme combinaison linéaire des autres.

Paris Descartes 2012 — 2013 Mathématiques et calcul 1



Espaces vectoriels Indépendance linéaire

Famille libre
Exemple

Dans l’espace vectoriel R2, soit la famille de vecteurs :
~u = (1 ,−1) , ~v = (1 ,3) , ~w = (2 ,5).

La famille {~u , ~v , ~w} est liée.

Soient α , β , γ ∈ R tels que : α.~u+ β.~v+ γ. ~w = ~0
Alors :

�

α+ β+ 2γ = 0
−α+ 3β+ 5γ = 0

Donc α = −1
4 , β = −7

4 , γ = 1 et : ~w = 1
4 .~u+ 7

4 .~v

Remarque : Quand une famille est liée, on peut exprimer des
vecteurs de la famille comme combinaison linéaire des autres.

Paris Descartes 2012 — 2013 Mathématiques et calcul 1



Espaces vectoriels Indépendance linéaire

Famille libre
Exemple

Dans l’espace vectoriel R2, soit la famille de vecteurs :
~u = (1 ,−1) , ~v = (1 ,3) , ~w = (2 ,5).

La famille {~u , ~v , ~w} est liée.

Soient α , β , γ ∈ R tels que : α.~u+ β.~v+ γ. ~w = ~0
Alors :

�

α+ β+ 2γ = 0
−α+ 3β+ 5γ = 0

Donc α = −1
4 , β = −7

4 , γ = 1

et : ~w = 1
4 .~u+ 7

4 .~v

Remarque : Quand une famille est liée, on peut exprimer des
vecteurs de la famille comme combinaison linéaire des autres.

Paris Descartes 2012 — 2013 Mathématiques et calcul 1



Espaces vectoriels Indépendance linéaire

Famille libre
Exemple

Dans l’espace vectoriel R2, soit la famille de vecteurs :
~u = (1 ,−1) , ~v = (1 ,3) , ~w = (2 ,5).

La famille {~u , ~v , ~w} est liée.

Soient α , β , γ ∈ R tels que : α.~u+ β.~v+ γ. ~w = ~0
Alors :

�

α+ β+ 2γ = 0
−α+ 3β+ 5γ = 0

Donc α = −1
4 , β = −7

4 , γ = 1 et : ~w = 1
4 .~u+ 7

4 .~v

Remarque : Quand une famille est liée, on peut exprimer des
vecteurs de la famille comme combinaison linéaire des autres.

Paris Descartes 2012 — 2013 Mathématiques et calcul 1



Espaces vectoriels Indépendance linéaire

Famille libre
Exemple

Dans l’espace vectoriel R2, soit la famille de vecteurs :
~u = (1 ,−1) , ~v = (1 ,3) , ~w = (2 ,5).

La famille {~u , ~v , ~w} est liée.

Soient α , β , γ ∈ R tels que : α.~u+ β.~v+ γ. ~w = ~0
Alors :

�

α+ β+ 2γ = 0
−α+ 3β+ 5γ = 0

Donc α = −1
4 , β = −7

4 , γ = 1 et : ~w = 1
4 .~u+ 7

4 .~v

Remarque : Quand une famille est liée, on peut exprimer des
vecteurs de la famille comme combinaison linéaire des autres.

Paris Descartes 2012 — 2013 Mathématiques et calcul 1



Espaces vectoriels Indépendance linéaire

Famille libre
Exemple

Soit la famille F = {~u(X) = X
2
+ 1 , ~v(X) = X

2 − 1 , ~w(X) = X
2}

dans l’espace vectoriel R2[X].

La famille F est liée.

Soient α , β , γ ∈ R tels que : α.~u(X) + β.~v(X) + γ. ~w(X) = ~0
Alors :

�

α+ β+ γ = 0
α − β = 0

Donc α = β = −
γ

2
En prenant γ = −2 : ~u(X) + ~v(X)− 2 ~w(X) = 0
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Espaces vectoriels Indépendance linéaire

Famille libre
Remarques

Soit F = {~ui}1≤i≤n une famille libre dans un espace vectoriel E.

É ∀i (1 ≤ i ≤ n), ~ui 6= ~0

É Si i 6= j, ~ui 6= ~uj
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Espaces vectoriels Indépendance linéaire

Base d’un espace vectoriel

On appelle base d’un espace vectoriel, une famille de
vecteurs, B, à la fois libre et génératrice.
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Espaces vectoriels Indépendance linéaire

Base d’un espace vectoriel
Exemple

Dans l’espace vectoriel R2, la famille B = {~e1 , ~e2}, avec :

~e1 = (1,0) et ~e2 = (0,1),
est une base de R2.

É B est libre : si α.~e1 + β.~e2 = ~0, alors :
�

α = 0
β = 0

É B est génératrice : si ~u = (xu , yu), xu , yu ∈ R

et : ~u = xu.~e1 + yu.~e2
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Espaces vectoriels Indépendance linéaire

Base d’un espace vectoriel
Exemple

Dans l’espace vectoriel des polynômes de degré inférieur ou
égal à 3, R3[X], la famille B = {~f0(X) ,~f1(X) ,~f2(X) ,~f3(X)} avec :

~f0(X) = 1, ~f1(X) = X, ~f2(X) = X
2
, ~f3(X) = X

3

est une base.

É B est libre : si α0.~f0(X) + α1.~f1(X) + α2.~f2(X) + α3.~f3(X) = ~0,
alors :

α0 + α1X+ α2X
2
+ α3X

3
= 0

donc : α0 = α1 = α2 = α3 = 0
É B est génératrice puisque tout polynôme de degré au

plus 3, s’écrit :
α0 + α1X+ α2X

2
+ α3X

3
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Espaces vectoriels Indépendance linéaire

Base d’un espace vectoriel

Théorème : Si un espace vectoriel possède une partie
génératrice à n éléments, toute partie ayant au moins n+ 1
éléments est liée.

(Théorème admis)

Corollaire : Dans un espace vectoriel, E, toutes les bases ont
le même nombre d’éléments.

Ce nombre s’appelle la dimension de l’espace vectoriel E.

Notation : dimE
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Espaces vectoriels Indépendance linéaire

Démonstration du corollaire

Soit B1 une base de cardinal n1 et B2 une base de cardinal n2.

B1 est libre et B2 génératrice,

donc : n1 ≤ n2

B2 est libre et B1 génératrice,

donc : n2 ≤ n1

n1 = n2
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Espaces vectoriels Indépendance linéaire

Base d’un espace vectoriel
Propriétés des bases d’un espace vectoriel

Dans un espace vectoriel E de dimension n :

É Toute famille libre de n vecteurs est une base.

É Toute famille génératrice de n vecteurs est une base.

É Toute famille contenant plus de n vecteurs est liée.

É Toute famille contenant moins de n vecteurs n’est pas
génératrice.

Autre expression :

É Une base est une famille libre maximale

É Une base est une partie génératrice minimale
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génératrice.

Autre expression :

É Une base est une famille libre maximale

É Une base est une partie génératrice minimale
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Espaces vectoriels Indépendance linéaire

Base d’un espace vectoriel
Les espaces vectoriels R

n

Les espaces vectoriels Rn sont de dimension n.

Les familles B = {~ei} où :

~ei = (0,. . . ,0,1,0,. . . ,0)
↑

i-ième position

sont des bases de Rn

On les appelle les bases canoniques de Rn
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Espaces vectoriels Indépendance linéaire

Base d’un espace vectoriel
Unicité de l’écriture dans une base

Proposition : Soit une base B = {~ai}1≤i≤n une base d’un
espace vectoriel E de dimension n.

Tout vecteur ~u ∈ E s’écrit de manière unique :

~u =
n
∑

i=1

αi.~ai

Les scalaires αi s’appellent les coordonnées de ~u dans la
base B
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Espaces vectoriels Indépendance linéaire

Dimension d’un sous-espace vectoriel

Soit E un espace vectoriel de dimension n et F 6= {~0} un
sous-espace vectoriel de E.

É Toute famille libre de F est libre dans E.

É Soit p le nombre de vecteurs d’une famille maximale libre,
B, de F :

1. B est une base de F

2. p ≤ n

3. Si p = n, B est une base de E et F = E.
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Espaces vectoriels Indépendance linéaire

Dimension d’un sous-espace vectoriel

Théorème : Si F est un sous-espace vectoriel d’un espace
vectoriel E, de dimension n :

1. dimF ≤ dimE

2. dimF = dimE ⇒ F = E
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Espaces vectoriels Indépendance linéaire

Théorème de la base incomplète

Théorème : Soit E un espace vectoriel, L une famille libre
dans E et G une famille génératrice de E.

Alors, il existe une base B de E telle que : L ⊂ B ⊂ L ∪ G

Parmi toutes les familles libres contenant L et incluses dans L ∪ G, soit B
une partie maximale.

On pose F = Vect
�

B
�

.

É Si F = E, B est la base cherchée.

É Si F 6= E, ∃~g ∈ G tel que ~g /∈ F.

Alors, B ∪ {~g} est libre, contient B et est contenue dans L ∪ G

donc B n’est pas maximale
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Espaces vectoriels Indépendance linéaire

Rang d’une famille de vecteurs

Soit une famille F = {~ui}1≤i≤p de vecteurs d’un espace
vectoriel E de dimension n ≥ p.

On appelle, rang de la famille F , la dimension du sous-espace
vectoriel F engendré par F .
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Espaces vectoriels Indépendance linéaire

Rang d’une famille de vecteurs

Proposition : On ne change pas le rang d’une famille de
vecteurs si :

É On permute les vecteurs
É On multiplie l’un d’entre eux par un réel non-nul.
É On ajoute à l’un d’entre eux par une combinaison linéaire

des autres.
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Espaces vectoriels Indépendance linéaire

Rang d’une famille de vecteurs
Calcul

Calculer le rang de la famille de vecteurs :
~u = (1,2,3), ~v = (0,2,1), ~w = (2,6,7)

~u = (1,2,3)
~v = (0,2,1)
~w = (2,6,7)

On remplace ~w par ~w− 2~u :

~u = (1,2,3)
~v = (0,2,1)
~w− 2~u = (0,2,1)

rg
�

Vect(~u, ~v, ~w)
�

= 2
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Espaces vectoriels Somme de sous-espaces vectoriels

Soit E un espace vectoriel et F1 et F2 deux sous-espaces
vectoriels de E.

On pose : F1 + F2 = {~u ∈ E | ~u = ~u1 + ~u2, ~u1 ∈ F1 et ~u2 ∈ F2}

Proposition : F1 + F2 est un sous-espace vectoriel de E

Soient ~u , ~v ∈ F1 + F2 et α ∈ R
É ∃~u1 , ~v1 ∈ F1 et ∃~u2 , ~v2 ∈ F2 : ~u = ~u1 + ~u2 et ~v = ~v1 + ~v2

É ~u+ ~v = (~u1 + ~u2) + (~v1 + ~v2) = (~u1 + ~v1) + (~u2 + ~v2)

É ~u1 + ~v1 ∈ F1 et ~u2 + ~v2 ∈ F2

É α.~u = α.(~u1 + ~u2) = α.~u1 + α.~u2

É α.~u1 ∈ F1 et α.~u2 ∈ F2
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Condition d’unicité

Soit E un espace vectoriel et F1 et F2 deux sous-espaces
vectoriels de E tels que E = F1 + F2.

∀~u ∈ E, ∃~u1 ∈ F1 ∃~u2 ∈ F2 : ~u = ~u1 + ~u2

Proposition : La décomposition ~u = ~u1 + ~u2 est unique si, et
seulement si, F1 ∩ F2 = {~0}

1. Soit ~u ∈ F1 ∩ F2 : ~u = ~u+ ~0 ~u ∈ F1 ~0 ∈ F2
~u = ~0+ ~u ~0 ∈ F1 ~u ∈ F2

donc : ~u = ~0 et F1 ∩ F2 = {~0}
2. Si F1 ∩ F2 = {~0}, supposons :

~u = ~u1 + ~u2 = ~v1 + ~v2, ~u1 , ~v1 ∈ F1, ~u2 , ~v2 ∈ F2

Alors : ~u1 − ~v1 = ~u2 − ~v2 ∈ F1 ∩ F2 = {~0}
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Espaces vectoriels Somme de sous-espaces vectoriels

Somme directe de sous-espaces vectoriels

Théorème : Soient F1 et F2 deux sous-espaces vectoriels
d’un espace vectoriel E tels que E = F1 + F2, les deux
conditions suivantes sont équivalentes :
1. La décomposition de tout ~u ∈ E en somme ~u1 + ~u2, avec
~u1 ∈ F1 et ~u2 ∈ F2 est unique.

2. F1 ∩ F2 = {~0}

Dans ce cas, on dit que F1 et F2 sont deux sous-espaces
vectoriels supplémentaires dans E ou que E est somme
directe de F1 et F2.

Notation : E = F1
⊕

F2
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Existence d’un supplémentaire

Théorème : Soit F un sous-espace vectoriel de dimension p
d’un espace vectoriel E de dimension n, tel que : F ( E.

Alors : F admet au moins un supplémentaire G dans E et :
E = F

⊕

G ⇒ dimE = dimF+ dimG
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Somme directe
Exemple

Soit l’espace vectoriel R2.

F1 = {~u = (x ,0)} = R× {0}
F2 = {~v = (0 , y)} = {0}× R

1. F1 et F2 sont des sous-espaces vectoriels de R2.

2. R2
= F1 + F2.

3. F1 ∩ F2 = {~0}.

R
2
= F1

⊕

F2
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F2

F1o
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F2

F1o ~u

~v ~u+ ~v
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F2

F1o ~u

~v ~u+ ~v

F ′
2
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F2

F1o ~u

~v

F ′
2

~u′

~v′ ~u+ ~v = ~u′ + ~v′
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Soit {~f1, ~f2, · · · ,~fp} une base de F p < n.

Par le théorème de la base incomplète

:

∃{~e1, ~e2, · · · , ~en−p} tels que : {~f1, ~f2, · · · ,~fp, ~e1, ~e2, · · · , ~en−p} soit une base de E.

G= Vect (~e1, ~e2, · · · , ~en−p), tout vecteur ~u ∈ E s’écrit :

~u=

p
∑

i=1

αi~fi +
n−p
∑

j=1

βj~ej

p
∑

i=1

αi~fi ∈ F et
n−p
∑

j=1

βj~ej ∈ G,

donc : E= F+G

Si ~u ∈ F ∩G

~u=

p
∑

i=1

αi~fi =
n−p
∑

j=1

βj~ej :

p
∑

i=1

αi~fi −
n−p
∑

j=1

βj~ej = ~0

⇒ ∀i, j, αi = βj = 0 ⇒ F ∩G= {~0}
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Théorème de la base incomplète

Théorème : Soit E un espace vectoriel, L une famille libre
dans E et G une famille génératrice de E.

Alors, il existe une base B de E telle que : L ⊂ B ⊂ L ∪ G

Parmi toutes les familles libres contenant L et incluses dans L ∪ G, soit B
une partie maximale.

On pose F = Vect
�

B
�

.

É Si F = E, B est la base cherchée.

É Si F 6= E, ∃~g ∈ G tel que ~g /∈ F.

Alors, B ∪ {~g} est libre, contient B et est contenue dans L ∪ G

donc B n’est pas maximale

Paris Descartes 2012 — 2013 Mathématiques et calcul 1



Espaces vectoriels Somme de sous-espaces vectoriels

Soit {~f1, ~f2, · · · ,~fp} une base de F p < n.

Par le théorème de la base incomplète :

∃{~e1, ~e2, · · · , ~en−p} tels que : {~f1, ~f2, · · · ,~fp, ~e1, ~e2, · · · , ~en−p} soit une base de E.

G= Vect (~e1, ~e2, · · · , ~en−p), tout vecteur ~u ∈ E s’écrit :

~u=

p
∑

i=1

αi~fi +
n−p
∑

j=1

βj~ej

p
∑

i=1

αi~fi ∈ F et
n−p
∑

j=1

βj~ej ∈ G,

donc : E= F+G

Si ~u ∈ F ∩G

~u=

p
∑

i=1

αi~fi =
n−p
∑

j=1

βj~ej :

p
∑

i=1

αi~fi −
n−p
∑

j=1

βj~ej = ~0

⇒ ∀i, j, αi = βj = 0 ⇒ F ∩G= {~0}

Paris Descartes 2012 — 2013 Mathématiques et calcul 1



Espaces vectoriels Somme de sous-espaces vectoriels

Soit {~f1, ~f2, · · · ,~fp} une base de F p < n.

Par le théorème de la base incomplète :

∃{~e1, ~e2, · · · , ~en−p} tels que : {~f1, ~f2, · · · ,~fp, ~e1, ~e2, · · · , ~en−p} soit une base de E.

G= Vect (~e1, ~e2, · · · , ~en−p), tout vecteur ~u ∈ E s’écrit :

~u=

p
∑

i=1

αi~fi +
n−p
∑

j=1

βj~ej

p
∑

i=1

αi~fi ∈ F et
n−p
∑

j=1

βj~ej ∈ G,

donc : E= F+G

Si ~u ∈ F ∩G

~u=

p
∑

i=1

αi~fi =
n−p
∑

j=1

βj~ej :

p
∑

i=1

αi~fi −
n−p
∑

j=1

βj~ej = ~0

⇒ ∀i, j, αi = βj = 0 ⇒ F ∩G= {~0}

Paris Descartes 2012 — 2013 Mathématiques et calcul 1



Espaces vectoriels Somme de sous-espaces vectoriels

Soit {~f1, ~f2, · · · ,~fp} une base de F p < n.

Par le théorème de la base incomplète :

∃{~e1, ~e2, · · · , ~en−p} tels que : {~f1, ~f2, · · · ,~fp, ~e1, ~e2, · · · , ~en−p} soit une base de E.

G= Vect (~e1, ~e2, · · · , ~en−p), tout vecteur ~u ∈ E s’écrit :

~u=

p
∑

i=1

αi~fi +
n−p
∑

j=1

βj~ej

p
∑

i=1

αi~fi ∈ F et
n−p
∑

j=1

βj~ej ∈ G,

donc : E= F+G

Si ~u ∈ F ∩G

~u=

p
∑

i=1

αi~fi =
n−p
∑

j=1

βj~ej :

p
∑

i=1

αi~fi −
n−p
∑

j=1

βj~ej = ~0

⇒ ∀i, j, αi = βj = 0 ⇒ F ∩G= {~0}

Paris Descartes 2012 — 2013 Mathématiques et calcul 1



Espaces vectoriels Somme de sous-espaces vectoriels

Soit {~f1, ~f2, · · · ,~fp} une base de F p < n.

Par le théorème de la base incomplète :

∃{~e1, ~e2, · · · , ~en−p} tels que : {~f1, ~f2, · · · ,~fp, ~e1, ~e2, · · · , ~en−p} soit une base de E.

G= Vect (~e1, ~e2, · · · , ~en−p), tout vecteur ~u ∈ E s’écrit :

~u=

p
∑

i=1

αi~fi +
n−p
∑

j=1

βj~ej

p
∑

i=1

αi~fi ∈ F et
n−p
∑

j=1

βj~ej ∈ G, donc : E= F+G

Si ~u ∈ F ∩G

~u=

p
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i=1

αi~fi =
n−p
∑

j=1

βj~ej :

p
∑

i=1

αi~fi −
n−p
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⇒ ∀i, j, αi = βj = 0 ⇒ F ∩G= {~0}
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Proposition : Soit E un espace vectoriel et F et G deux
sous-espaces vectoriels de E.

dim(F+G) = dim(F) + dim(G)− dim(F ∩G)

É Soit H un supplémentaire de F ∩G dans G :
H ∩ F = H ∩ (F ∩G) = {~0} donc : F+G = F

⊕

H

É dim(H) = dim(G)− dim(F ∩G) donc :
dim(F+G) = dim(F)+dim(H) = dim(F)+dim(G)−dim(F∩H)
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